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Finding a theoretically sound feedback function for variable-interval schedules remains an important
unsolved problem. It is important because interval schedules model a significant feature of the world:
the dependence of reinforcement on factors beyond the organism's control. The problem remains
unsolved because no feedback function yet proposed satisfies all the theoretical and empirical require-
ments. Previous suggestions that succeed in fitting data fail theoretically because they violate a newly
recognized theoretical requirement: The slope of the function must approach or equal 1.0 at the origin.
A function is presented that satisfies all requirements but lacks any theoretical justification. This
function and two suggested by Prelec and Herrnstein (1978) and Nevin and Baum (1980) are evaluated
against several sets of data. All three fitted the data well. The success of the two theoretically incorrect
functions raises an empirical puzzle: Low rates of reinforcement are coupled with response rates that
seem anomalously high. It remains to be discovered what this reflects about the temporal patterning
of operant behavior at low reinforcement rates. A theoretically and empirically correct function derived
from basic assumptions about operant behavior also remains to be discovered.
Key words: feedback function, variable-interval schedules, molar relations

The dynamics of behavior may be under-
stood as the outcome of the organism and en-
vironment interacting together as a feedback
system (Baum, 1973, 1981, 1989; Staddon,
1983). The organism's functional relations (or
"O-rules"; Baum, 1973) link environmental
events to behavioral output. The environ-
ment's feedback functions (or "E-rules"; Baum,
1973) link behavioral output to environmental
events (i.e., consequences). Equilibrium re-
sults from the interaction between functional
relations and feedback functions. Any brief
disturbance to the system results in departure
from equilibrium, but once the disturbance is
gone, the system stabilizes again. Any change
in a functional relation (e.g., a shift in depri-
vation) or in a feedback function (e.g., a change
of schedule) results in a new equilibrium (e.g.,
Myerson & Hale, 1988; Staddon, 1988).

Broadly speaking, any theory of operant be-
havior must specify two components: what is
desirable and what is possible. What is desir-
able depends on properties of the organism; in
the present context, it is set by the organism's
functional relations, which might be thought
of, for example, with terms like melioration
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(Herrnstein & Vaughan, 1980; Vaughan &
Herrnstein, 1987) or optimality (Rachlin, 1989;
Rachlin, Battalio, Kagel, & Green, 1981;
Staddon, 1983). What is possible depends on
properties of the environment; in the present
context, it is given by the feedback functions
imposed by schedules of reinforcement. This
paper leaves aside the problem of what is de-
sirable and focuses on the problem of finding
an adequate method for specifying what is pos-
sible-that is, for specifying environmental
constraints in feedback functions.

Before the 1970s, it was common to define
and explain schedules of reinforcement by dis-
tinguishing between those responses that could
produce reinforcers and those that could not.
An interval schedule, for example, was said to
reinforce only the first response following the
timing-out of the interval; all others go un-
reinforced. If, instead, we think of each sched-
ule as imposing a relation that specifies the
consequences, over time, of a performance
maintained over time, we arrive at a concrete
idea of a feedback function, according to which
rate of reinforcement is determined by re-
sponse rate (Baum, 1973). An interval sched-
ule, for example, imposes a feedback function
that is negatively accelerated and approaches
a horizontal asymptote (the programmed rate
of reinforcement) at high response rates.

This paper has three aims: (a) to explain
briefly why specifying the variable-interval
(VI) feedback function is an important prob-

365

1992, 57, 365-375 NUMBER 3 (MAY)



WILLIAM M. BAUM

lem, (b) to explain why it is as yet unsolved,
and (c) to suggest some possible strategies for
solving it.

An Important Problem
The importance of interval schedules is best

seen in contrast with ratio schedules. When
responses are reinforced according to a ratio
schedule, it can be said that reinforcement is
completely under the control of responding. A
certain number of responses must be com-
pleted; nothing else matters. Ratio schedules,
however, represent an extreme situation, be-
cause the environment often includes other fac-
tors that are beyond the control of the respond-
ing with which the schedule makes contact. If
dialing the telephone produces a busy signal,
I can dial the telephone again, but my dialing
cannot effect the freeing of the line. Whenever
the availability of reinforcement depends on
such uncontrollable factors, the dependency
between reinforcement and responding shares
the character of an interval schedule. The timer
in the laboratory substitutes for the uncon-
trollable factors of the real world.

Because interval-schedule-like situations
arise commonly in the behavioral environment,
no theory of performance can be complete that
fails to offer an account of interval schedules.
Seen in the light of the organism-environment
feedback system, no theory of performance can
be complete without specification of the feed-
back function for interval schedules.
We need to focus particularly on VI sched-

ules because fixed-interval schedules present
the additional complication of an extended
postreinforcement pause. The evidence sug-
gests that fixed-interval performance can be
divided into this initial pause followed by per-
formance that resembles VI responding in all
respects (e.g., Schneider, 1969). Hence, VI
schedules can be considered prototypical, and
solution of the problem of VI performance is
likely to make possible solutions of other sit-
uations that share the character of VI sched-
ules (Baum, 1989).

An Unsolved Problem
Several attempts at specifying the VI feed-

back function have been made. Although some
may seem successful, we shall soon see that
none has succeeded completely. One reason
may be that the characteristics of the required
function have never been fully specified.

If r is rate of reinforcement and B is response
rate, then the general form of the feedback
function is r =f(B), and the question of interest
is what properties of the function f can be
deduced from the properties of VI schedules.
Two properties are true of any standard

ratio or interval schedule of reinforcement.
First, the function must pass through the or-
igin. No responding means no reinforcement.
Freely delivered reinforcers might be super-
imposed, but the VI feedback function itself
passes through the origin because it reflects
response-dependent reinforcement. Second, the
function must be continuous over the range of
possible response rates. For every response rate
that can occur there must be a definite rate of
reinforcement, even if that rate of reinforce-
ment is zero.

Besides these general characteristics, the VI
feedback function in particular must possess
at least two others. First, the function must
approach a horizontal asymptote equal to the
programmed rate of reinforcement as the re-
sponse rate increases. This property reflects
the limit imposed by the timer (the uncon-
trollable factor) that defines an interval sched-
ule. When response rate is low, the rate of
reinforcement can fall below that which is pro-
grammed, but as response rate grows, the ob-
tained rate of reinforcement approaches the
programmed rate, because reinforcers are pro-
duced almost as soon as they are made avail-
able.
The second specific requirement of a VI

feedback function, though crucial, has up to
now gone unnoticed. It is generally understood
that when response rate gets low enough, a VI
schedule becomes functionally like continuous
reinforcement (fixed ratio, or FR, 1). Each
reinforcer, once available, is held until a re-
sponse occurs. If the shortest time between
responses exceeds the longest programmed in-
terval, then every response will be reinforced.
At the low end, therefore, the VI feedback
function must approach the feedback function
for continuous reinforcement, a line passing
through the origin with (assuming the time
units of response rate and rate of reinforcement
to be the same) a slope of 1.0. This property
has been represented graphically (Baum, 1973,
1981), but without recognition that it places a
major mathematical constraint on the feedback
function: As response rate approaches zero, the
derivative of the function must approach 1.0.
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Of the VI feedback functions that have been
proposed, some fail both theoretically and em-
pirically (i.e., fail to fit data), some pass the-
oretically but fail empirically, and some pass
empirically but fail theoretically. Rachlin
(1978, 1989), for example, suggested a power
function, which, expressed in terms of response
rate, takes the form r = aBm, where m is less
than 1.0. This function fails both specific the-
oretical requirements: (a) It lacks a horizontal
asymptote-as B grows, r grows without limit.
(b) It fails to approach continuous reinforce-
ment at the low end-as B approaches zero,
the derivative dr/dB approaches infinity. Fi-
nally, it fails to fit known sets of data (Nevin
& Baum, 1980).
Most proposed VI feedback functions have

assumed the general form
I

t + D(B)' (1)
where t is the average programmed interval of
the VI, and D(B) is the additional time ("de-
lay"), the average interval from the setting-up
of the reinforcer to its actual delivery, a func-
tion of B, introduced by the schedule's response
requirement. In words, Equation 1 states only
what is true by definition: The rate of rein-
forcement equals the reciprocal of the obtained
interval between reinforcers. With it, we can
focus more specifically on the delay term D
and the way it depends on B.
To arrive at possible functions D(B), re-

searchers have had to make assumptions about
the temporal structure of VI responding. The
earliest proposal (Baum, 1973), assuming reg-
ular responding, approximated D as one half
of the average interresponse time, 0.5/B. Stad-
don (1980), assuming the other extreme of
perfectly random responding, generated by a
Poisson process, suggested that D might equal
the average interresponse time, 1/B.

It is well known from studies of interre-
sponse times that VI responding is neither per-
fectly regular nor perfectly random, but ap-
pears to embody a compromise of regularity
with randomness (e.g., Blough, 1963; Schaub,
1967). Prelec and Herrnstein (1978) proposed
a general form that includes perfect regularity
and randomness as special cases, D(B) = a/B,
where the parameter a might be a function of
experimental conditions apart from t, such as
physical characteristics of the response key or
the particular intervals comprising the sched-

ule. The resultant feedback function is a hy-
perbola:

B
tB + a' (2)

Although Equation 2 satisfies the require-
ment that r approach 1/t as B grows large, it
fails to satisfy the low-end requirement with
any value of a other than 1.0. The derivative
of Equation 2 with B set equal to zero equals
1/a. Because the slope of the feedback function
must equal 1.0 when B equals zero, a can take
no value other than 1.0. Although this verifies
that Staddon's (1980) proposal passes both
theoretical tests, the implied randomness of
responding remains unrealistic. Not surpris-
ingly, Equation 2 with a equal to 1.0 fails to
fit known data (Nevin & Baum, 1980).

Although Prelec and Herrnstein's (1978)
particular equation cannot be completely cor-
rect, nevertheless it appears to embody a point
that is inescapable: To accommodate individ-
ual differences and variations in apparatus and
experimental method, the feedback function
needs to include one or more parameters.

Nevin and Baum (1980) derived a VI feed-
back function that included parameters and a
compromise between random and regular re-
sponding. They assumed that VI performance
consists of bursts of responding alternating with
pauses. During a burst, responses were as-
sumed to occur at a constant tempo, K. Both
bursts and pauses were assumed to terminate
randomly, according to two Poisson processes.
Finally, the rate of terminating pauses, x, and
the rate of terminating bursts, y, were assumed
to vary inversely, such that the sum x + y
equaled a constant, c. The overall rate of re-
inforcement was considered to be the sum of
the rate obtained during bursts and the rate
obtained during pauses. The resulting equa-
tion was

B 1 K-B 1
r=- +

Kt+0.5/K K t+K/cB' (3)

where B/K represents the proportion of time
spent responding, (K - B)/K (or 1 - B/K)
represents the proportion of time spent paus-
ing, the first term represents rate of reinforce-
ment during bursts, the second represents rate
during pauses, and K/cB represents l/x, the
average duration of a pause.

Equation 3 seemed to satisfy all the require-
ments. It approached 1/t as B grew large. It
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fitted all the sets of data that Nevin and Baum
examined. The derived values of K seemed to
coincide with knowledge about interresponse
times (e.g., Blough, 1963; Palya, 1992). When
the low-end derivative rule is applied to Equa-
tion 3, however, a problem appears. The de-
rivative with B equal to zero equals

r'(0) = Kt + 0.5 +K

When this expression is set equal to 1.0, the
required value, we find that

c=K- K (4)
Kt + 0.5'

Because the tempo K is usually a relatively
large number, greater than all but the highest
response rates, and t is usually considerably
greater than zero, the second term on the right
hand side of Equation 4 is negligible in com-
parison to K. The equation implies, therefore,
that c must approximately equal K.

Equation 4 presents a problem for Nevin
and Baum's (1980) analysis, because the val-
ues of c necessary to fit the data were always
much less than K. With K equal to 100 and c
equal to 10, the derivative, instead of ap-
proaching 1.0 as B approaches zero, ap-
proaches a value close to 0.1. Moreover, if c
approximately equals K, Equation 2 reduces
to a simple compromise between Baum's (1973)
early suggestion based on regular responding
and Staddon's (1980) suggestion based on ran-
dom responding. Such an equation cannot fit
the data.

Nevin and Baum's (1980) reasoning can be
used to derive a slightly different function, more
in keeping with Equation 1. Equation 3 rep-
resents a weighted average of two rates of re-
inforcement, that during bursts and that dur-
ing pauses. Instead, the delay during a burst
(0.5/K) can be averaged with the delay during
a pause (K/cB) to produce a single expression
for the delay D(B):

r=
1

t(51t + (B/K)(0.5/K) + (K - B)/cB (5)

Although Equation 5 represents a small im-
provement on Equation 3 conceptually, the
same linkage occurs between c and K; when
the derivative with B equal to zero-r'(0)-is
set equal to 1.0, one finds that c equals K.
McDowell and associates (McDowell &

Kessel, 1979; McDowell & Wixted, 1988),
adopting an approach suggested by systems
theory and ignoring the VI feedback function,
derived a performance function relating VI
responding to rate of reinforcement:

B = [ln(me'/r + b)]-, (6)
where m and b are parameters and e is the
base of natural logarithms. Because this fits
many VI performance data, it appears to cir-
cumvent the problem of defining the feedback
function.
The trouble with Equation 6 is that it as-

sumes no feedback between responding and
reinforcement; it assumes that for any given
VI schedule, 1/r equals t, as if the VI were
indistinguishable from response-independent
reinforcement (a variable-time schedule). Apart
from whatever other theoretical problems such
an approximation may present, it is bound to
be inaccurate at low response rates. As long
as response rate is high relative to the pro-
grammed rate of reinforcement, the obtained
rate of reinforcement approximates the pro-
grammed rate, but whenever conditions cause
response rate to drop toward the programmed
rate of reinforcement, rate of reinforcement
becomes heavily dependent on responding, as
in a ratio schedule, and drops in accordance
with response rate.
McDowell and Wixted's (1988) equation

for ratio schedules incorporates the linear feed-
back relation 1/r = n/B, where n is the size
of the ratio requirement:

B = [ln(men/B + b)]-l. (7)
This is the equation that presumably would
begin to apply to VI performance when re-
sponse rate was low enough for feedback to be
ratio-like.

McDowell's approach, if it is to work, would
require some sort of compromise between ef-
fects of high and low response rates analogous
to the compromise that Nevin and Baum (1980)
attempted between regular and random re-
sponding. Indeed, under their assumptions the
distinction between high- and low-rate per-
formances becomes the same as the distinction
between regular and random responding, be-
cause responding becomes more regular as it
grows and more random as it falls. It remains
to be seen whether some compromise between
Equations 6 and 7 can be derived, but Equa-
tion 6 by itself cannot satisfy the requirements
for a comprehensive theory of VI performance.
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Strategies for Solution
The sort of approach taken by Nevin and

Baum (1980) to deriving feedback functions
may be called the "bottom-up" approach. Be-
ginning with seemingly reasonable assump-
tions about the temporal structure of respond-
ing, one derives a function and tests it against
the theoretical requirements and the data. If
it fails, one goes back to the assumptions,
changes them, derives a new function, and so
on. Although this approach may solve the
problem and need not be abandoned, it can be
complemented by an alternative, the "top-
down" approach.

In the top-down approach, one lists all the
theoretical requirements and looks for func-
tional forms that satisfy them. These can then
be tested against the data. If one can be found
that passes all tests, then it might prove pos-
sible to derive it afterwards by the bottom-up
approach. The praticality of this method hinges
on discovering enough possible functional
forms.

Given our requirements of continuity, pass-
ing through the origin, a horizontal upper as-
ymptote, and a slope of 1.0 at the origin, how
many functional forms might be possible? The
answer is uncertain. Our requirements elim-
inate many possibilities, however, and the ones
remaining seem mostly to involve exponential
terms.

In general terms, we require that as B ap-
proaches zero, the feedback function r(B)
should reduce to r = B. If we work from Equa-
tion 1, our problem becomes identifying func-
tional forms for D(B). We require that D(B)
become infinite as B approaches zero, that D(B)
approach zero or some small constant as B
approaches infinity, and

lim -D'(B)[t + D(B)]-2 = 1.
B-O

Because Prelec and Herrnstein's (1978) and
Nevin and Baum's (1980) proposals came close
to a solution, it might be helpful to consider
functions of the form

D(B) = (BBy(B)B'
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where y(B) is a function of B. Because setting
y equal to a constant smaller than 1.0 (y =
1/a in terms of Equation 2; a > 1) results in
reasonable fits to data and y needs to approach
1.0 when B approaches zero, a function y(B)

RESPONSES/M IN
Fig. 1. The results of fitting the three models (solid

curves) to performance on VI 2-min schedules in an ex-
periment by Baum (1976). The broken line represents the
feedback function for FR 1. Note logarithmic coordinates.
See text for further explanation.
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Table 1
Fits of the three models to Baum's (1976) data. PV: proportion of variance accounted for. S:
slope of least squares regression line fitted to residuals. The parameter t gives the derived value
of the VI in minutes. For explanations of the parameters K, a, and c, see text.

Model PV S t K a c

Hyperbola (Equation 2) .773 0.0004 2.16 6.5
Nevin-Baum (Equation 5) .773 0.0001 2.25 60 9.0
Equations 1, 8, and 9 .773 0.0001 2.14 0.15 10a

a Greater values produced no perceptible change in goodness of fit.

that rose to 1.0 when B approached zero and
fell to approach a value less than 1.0 as B
increased might offer a possible solution. For
example, one function with those properties is

y=a+(1 -a)e-cB. (9)

This describes a curve that rises toward 1.0 as
B decreases and declines asymptotically to-
ward a as B increases. When a equals 1.0, it
reduces toy = 1 (i.e., Staddon's, 1980, random-
responding model). More parameters could be
added to Equation 9, but two might suffice.
The equation derived by substituting Equation
9 into Equation 8 and Equation 8 into Equa-
tion 1 satisfies all the theoretical requirements
for the VI feedback function.

Fits to Data
Data sets to be fitted to possible feedback

functions come from experiments in which a
VI schedule was held constant across condi-
tions while some factor other than the schedule
was varied. Both the response rates and the
rates of reinforcement must be reported or be
derivable, and the range of variation in re-
sponse rate must be wide enough to produce
significant variation in rate of reinforcement.
Data sets meeting all these requirements are
comparatively rare. Nevin and Baum (1980)
located several that can serve here. Three
equations were fitted to each data set: the Pre-
lec-Herrnstein hyperbola of Equation 2, the
Nevin-Baum model as represented in Equa-
tion 5, and the equation derived by incorpo-
rating Equation 9 into Equation 8 and Equa-
tion 8 into Equation 1. They were fitted by
an iterative method that minimized the sum
of the squared deviations from the function in
logarithmic coordinates.

Figure 1 shows the three fits to data reported
by Baum (1976). Rats were exposed to con-
current schedules in which one component was
always VI 2 min. Each point represents rate

of lever pressing and rate of food delivery av-
eraged over several sessions for 1 rat; 6 rats'
data were pooled. Table 1 shows the best fit-
ting parameter values and two measures of
goodness of fit: proportion of variance ac-
counted for (PV) and the slope of a regression
line fitted to the residuals (S). If this latter
slope differs significantly from zero, then the
data deviate systematically from the curve. All
three fits appear close, with no systematic de-
viation. The derived values of t are close to the
nominal value of 2.0. As expected from their
inability to meet the low-rate theoretical re-
quirement, the hyperbola and the Nevin-Baum
equation parallel the FR 1 feedback line (bro-
ken line; r = 60B here) as response rate gets
low, but cannot meet it. For the hyperbola,
this results from a value of a (6.5) greater than
1.0. For the Nevin-Baum equation, this re-
sults from a value of c much lower than K (9
vs. 60). The ratio of K to c approximates the
value of a. The function derived from Equa-
tions 1, 8, and 9 meets the FR 1 feedback line
by making a horizontal move to the left at a
low range of response rates, less than one re-
sponse per minute in Figure 1. The response
rate at which this move begins depends on the
value of c in Equation 9.

Figures 2 and 3 show the results of fitting
the three equations to data from an experiment
by McSweeney (1975). Pigeons' pecks were
reinforced on two concurrent schedules, nom-
inally a VI 2 min and a VI 4 min. Response
rate was varied by varying deprivation. Figure
2 and Table 2 show the results for the VI
2-min schedule. Like Figure 1, Figure 2 in-
dicates that all three equations fit the data
closely. Equations 1, 8, and 9 again result in
a horizontal move to the left as response rate
drops below one per minute. Table 2 confirms
the visual impressions. The fits are good; the
derived values of t again are close to the nom-
inal value of 2.0. Again, a is larger than 1.0
for the hyperbola, c is less than K for the
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periment by McSweeney (1975). The broken line repre-
sents the feedback function for FR 1. Note logarithmic
coordinates. See text for further explanation.
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Fig. 3. The results of fitting the three models (solid

curves) to performance on VI 4-min schedules in an ex-

periment by McSweeney (1975). The broken line repre-

sents the feedback function for FR 1. Note logarithmic
coordinates. See text for further explanation.
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Table 2

Fits of the three models to McSweeney's (1975) data for VI 2-min schedules. PV: proportion
of variance accounted for. S: slope of least squares regression line fitted to residuals. The
parameter t gives the derived value of the VI in minutes. For explanations of the parameters
K, a, and c, see text.

Model PV S t K a c

Hyperbola (Equation 2) .928 -0.0001 1.75 16
Nevin-Baum (Equation 5) .929 -0.0001 1.83 158 10
Equations 1, 8, and 9 .929 -0.0001 1.72 0.063 6.0

Nevin-Baum equation, and K/c approxi-
mately equals a.

Figure 3 and Table 3 show the three fits for
McSweeney's VI 4-min schedule. The fits ap-
pear to be good. As before, the hyperbola and
the Nevin-Baum equation fail to converge on

the broken line (FR 1), and the curve gener-
ated by Equations 1, 8, and 9 moves horizon-
tally below one response per minute to con-

verge eventually on the line as B approaches
zero. Table 3 shows that, as before, the fits
are good and are all about equally good-
proportions of variance accounted for equal
about .9, and slopes fitted to residuals are close
to zero. The value of a for the hyperbola (15.0)
approximates the ratio ofK to c for the Nevin-
Baum equation (15.8). As Nevin and Baum
(1980) noted, the derived value of t appears to
be substantially less than the nominal value of
4.0, suggesting that the VI programmer op-
erated differently from the way McSweeney
thought.

Figure 4 shows fits of the three equations
to data from an experiment by Rachlin and
Baum (1972). Pigeons' pecks at a key were

reinforced on a VI 3-min schedule while var-

ious schedules of response-independent food
were superimposed. Each point again repre-
sents performance averaged across several ses-

sions for 1 subject; 6 pigeons' data were pooled.
Again, as B approaches zero, only the curve

derived from Equations 1, 8, and 9 converges

on the feedback line for FR 1 (broken line).
The curve accommodates the two lowest points
by placing them on the horizontal segment,
which again begins at about one response per

minute. This was probably possible by coin-
cidence, because the two points were generated
by 2 different pigeons. Table 4 shows that
accommodating the two points produced a bet-
ter fit (PV = .924 vs. PV = .878) for Equations
1, 8, and 9, as would be expected, but the fits
to the hyperbola and the Nevin-Baum equa-

tion were still respectable. All slopes fitted to
residuals were close to zero. The derived value
of t was close to the nominal value of 3 min.
The value of a for the hyperbola again ex-

ceeded 1.0, and the ratio of K to c for the
Nevin-Baum equation (6.74) equaled it al-
most exactly.

Conclusions and Questions
Each of the three models considered has its

advantages and disadvantages. The great ad-
vantage of the hyperbola is its simplicity. Be-
cause it seems to fit data with values of a be-
tween 6 and 16, it might be useful as an

approximation to the VI feedback function for
the purpose of constructing theoretical ac-

counts of operant performance (i.e., combining
feedback functions with functional relations;
e.g., Baum, 1981). The correspondence be-
tween the values of a (Tables 1 through 4)

ble 3

Fits of the three models to McSweeney's (1975) data for VI 4-min schedules. PV: proportion
of variance accounted for. S: slope of least squares regression line fitted to residuals. The
parameter t gives the derived value of the VI in minutes. For explanations of the parameters
K, a, and c, see text.

Model PV S t K a c

Hyperbola (Equation 2) .899 0.0008 3.00 15
Nevin-Baum (Equation 5) .900 0.0000 3.00 178 11.3
Equations 1, 8, and 9 .899 0.0002 2.94 0.063 6a

a Greater values produced no perceptible change in goodness of fit.
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and the ratio K/c suggests that the hyperbola
might be a good approximation to the Nevin-
Baum equation (Equation 5). The second term
in the denominator of Equation 5, 0.5B/AK,
takes on only small values; even at its maxi-
mum, when B equals K, the quantity 0.5/K
is normally a small number. We can consider
that term negligible and focus on the third
term, (K - B)/cB. If we divide the top and
bottom of the hyperbola (Equation 2) by B,
the corresponding term there is a/B. When B
is small, in the range of lower response rates
that determines the value of a, K is large enough
relative to B that the term (K - B)/cB ap-
proximately equals K/cB. This explains the
correspondence between a and K/c and sup-
ports the usefulness of the hyperbola as an
approximation to the Nevin-Baum equation.
The strength of the Nevin-Baum equation

(Equation 5) is that it stems from the bottom-
up approach-that is, it flows from plausible
propositions about the structure of operant be-
havior. The trouble with the hyperbola and
Equations 8 and 9 is the trouble with the top-
down method: The equations have no rationale
other than that they work. One would hope
for a feedback function that reflected verifiable
properties of the underlying performance. The
virtue of the bottom-up approach, as exem-
plified by Nevin and Baum (1980), is that the
assumptions can, at least in principle, be tested
and tied into the body of knowledge about
operant behavior. The assumption that oper-
ant behavior occurs in alternating bursts and
pauses can be tested against data; if true, it
presents an organizing principle that might be
useful in many contexts, not just in deriving
feedback functions.
The advantage to Equations 8 and 9 over

the hyperbola and the Nevin-Baum equation
is that Equations 8 and 9 result in a feedback
function that both fits the data and is theoret-
ically correct. If one could, using reasonable
assumptions in a bottom-up approach, derive
a function similar in form to this feedback
function, satisfying the low-rate approach to
the FR 1 feedback line, the result might be
truly illuminating.
One might still maintain that the Nevin-

Baum model and the hyperbola work well
enough for most purposes and that pursuit of
fine theoretical points might be a waste of time.
A partial answer is that the pursuit of theo-
retical correctness leads to interesting empir-
ical questions.
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Fig. 4. The results of fitting the three models (solid

curves) to performance on VI 3-min schedules in an ex-
periment by Rachlin and Baum (1972). The broken line
represents the feedback function for FR 1. Note logarith-
mic coordinates. See text for further explanation.
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Table 4
Fits of the three models to Rachlin and Baum's (1972) data. PV: proportion of variance accounted
for. S: slope of least squares regression line fitted to residuals. The parameter t gives the derived
value of the VI in minutes. For explanations of the parameters K, a, and c, see text.

Model PV S t K a c

Hyperbola (Equation 2) .878 -0.0003 2.77 6.8
Nevin-Baum (Equation 5) .878 -0.0003 2.81 159 23.6
Equations 1, 8, and 9 .924 -0.0005 2.66 0.11 5.31

The very success of the theoretically incor-
rect Equations 2 and 5 raises a puzzle. The
low response rates in Figures 1, 2, 3, and 4
produce remarkably low rates of reinforce-
ment. Although responses occurring randomly
at a rate of one per minute on a VI 2-min
schedule would produce fewer than 30 rein-
forcers per hour, they could still be expected
to produce an average of 20 reinforcers per
hour [60/(2 + 1)]. Inspection of Figures 1 and
2 reveals that the rates actually produced were
much lower-about four reinforcers per hour.
Similar remarks apply to Figure 3 (VI 4 min)
and Figure 4 (VI 3 min).

Alternatively, one could look at the low rates
of reinforcement as paired with response rates
that are too high. Rates of reinforcement on
the order of four per hour would go with ex-
tremely low response rates if each response
occurred in isolation. If the response rates are
anomalously high, it might be because the re-
sponses occur in clusters or bursts (separated,
of course, by long pauses). The value of the
hyperbola's parameter a (or K/c for the Nevin-
Baum equation) reflects the average number
of responses in such a burst. If, after a long
pause, six or seven responses (Table 1) oc-
curred in a very brief time interval, only one
of the responses would be likely to be rein-
forced. Although usually that response would
be the first, under some circumstances, such
as the presence of a changeover delay (COD),
it could be a later response.
The use of a COD might have contributed

to clustered responding in Baum's (1976) ex-
periment and McSweeney's (1975) experi-
ment. If no responding occurred on one alter-
native for a long time, and the first response
on the alternative initiated a COD during
which reinforcement was prevented, several
responses (15 or 16 in McSweeney's experi-
ment, six or seven in Baum's; Tables 1, 2, and
3) might occur before the COD ended and a

response produced a reinforcer. With long times
spent at the other alternative, every changeover
to the nonpreferred alternative might lead to
a reinforcer, but the low rate of reinforcement
there would accompany an anomalously high
response rate because of all the responses made
during the COD.

Such an explanation, however, would fail
with the Rachlin-Baum (1972) experiment,
because the alternative reinforcement there was
presented independently of responding. Be-
cause there was no feature comparable to a
COD, the first response after the VI timed out
produced a reinforcer. If responses occurred
in bursts with only one reinforcer per burst,
then each burst (about seven responses; Table
4) must have followed a reinforcer. This would
result in a pattern of a long pause, followed
by a single response and reinforcer, followed
by a burst of responses, followed again by a
pause, and so on.

Future research might pursue both the the-
oretical and the empirical problems raised. Can
we derive a theoretically correct feedback func-
tion from basic propositions about operant per-
formance-a bottom-up approach? What pat-
terns of responding develop when response rate
gets low? Some experiments in which response
rate is varied over a wide range for simple VI
schedules might be especially helpful.
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